Python Data Structure

Linked List

Normally, inserting into a list is constant time and inserting into an array is $O(n)$. Behind the scenes a python list is built as an array, so insert into a python list is $O(n)$ and finding an element is $O(1)$.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import unittest

class Element(object):
    def __init__(self, value):
        self.value = value
        self.next = None

class LinkedList(object):
    def __init__(self, head=None):
        self.head = head

    def append(self, new_element):
        current = self.head
        if self.head:
            while current.next:
                current = current.next
            current.next = new_element
        else:
            self.head = new_element

    def get_position(self, position):
        counter = 1
        current = self.head
        if position < 1:
            return None
        while current and counter <= position:
            if counter == position:
                return current
            current = current.next
            counter += 1
        return None

    def insert(self, new_element, position):
        counter = 1
        current = self.head
        if position > 1:
            while current and counter < position:
                if counter == position - 1:
                    new_element.next = current.next
                    current.next = new_element
                current = current.next
                counter += 1
        elif position == 1:
            new_element.next = self.head
            self.head = new_element

    def delete(self, value):
        current = self.head
        previous = None
        while current.value != value and current.next:
            previous = current
            current = current.next
        if current.value == value:
            if previous:
                previous.next = current.next
            else:
                self.head = current.next

# Test cases
# Set up some Elements
e1 = Element(1)
e2 = Element(2)
e3 = Element(3)
e4 = Element(4)

# Start setting up a LinkedList
ll = LinkedList(e1)
ll.append(e2)
ll.append(e3)

# Test get_position
# Should print 3
print ll.head.next.next.value
# Should also print 3
print ll.get_position(3).value

# Test insert
ll.insert(e4,3)
# Should print 4 now
print ll.get_position(3).value

# Test delete
ll.delete(1)
# Should print 2 now
print ll.get_position(1).value
# Should print 4 now
print ll.get_position(2).value
# Should print 3 now
print ll.get_position(3).value


class MyTest(unittest.TestCase):
    def test(self):
        self.assertEqual(ll.head.next.next.value, 3)

# if __name__ == '__main__':
#     unittest.main()

Stack

Python has a built-in function to turn a list into a stack, but we can code it as well.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class Element(object):
    def __init__(self, value):
        self.value = value
        self.next = None

class LinkedList(object):
    def __init__(self, head=None):
        self.head = head

    def append(self, new_element):
        current = self.head
        if self.head:
            while current.next:
                current = current.next
            current.next = new_element
        else:
            self.head = new_element

    def insert_first(self, new_element):
        new_element.next = self.head
        self.head = new_element

    def delete_first(self):
        deleted = self.head
        if self.head:
            self.head = self.head.next
            deleted.next = None
        return deleted

class Stack(object):
    def __init__(self, top=None):
        self.ll = LinkedList(top)

    def push(self, new_element):
        self.ll.append(new_element)

    def pop(self):
        return self.ll.delete_first()


# Test cases
# Set up some Elements
e1 = Element(1)
e2 = Element(2)
e3 = Element(3)
e4 = Element(4)

# Start setting up a Stack
stack = Stack(e1)

# Test stack functionality
stack.push(e2)
stack.push(e3)
print stack.pop().value
print stack.pop().value
print stack.pop().value
print stack.pop()
stack.push(e4)
print stack.pop().value

Queue

Python has a built-in queue function that is using a library collections’s package deque, which was designed to have fast appends and pops from both ends. Also, we can build our own enqueue from only one side.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Queue(object):
    def __init__(self, head=None):
        self.storage = [head]

    def enqueue(self, new_element):
        self.storage.append(new_element)

    def peek(self):
        return self.storage[0]

    def dequeue(self):
        return self.storage.pop(0)


# Setup
q = Queue(1)
q.enqueue(2)
q.enqueue(3)

# Test peek
# Should be 1
print q.peek()

# Test dequeue
# Should be 1
print q.dequeue()

# Test enqueue
q.enqueue(4)
# Should be 2
print q.dequeue()
# Should be 3
print q.dequeue()
# Should be 4
print q.dequeue()
q.enqueue(5)
# Should be 5
print q.peek()

Reference: Udacity Technical Interview Course